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Intermediate phases appearing in nonstoichiometric compounds are treated statistically using the model 
of superlattice formation. The condition for occurrence of the phase, relation between the concentration 
of defects and order parameter, and width of the phase are obtained. Decreasing of fluctuations of the 
distributed particles is accompanied characteristically with occurrence of the intermediate phase. 

1. Introduction 

The statistical treatment of nonstoi- 
chiometric compounds was done by Ander- 
son (1) using solid solution model where a 
nearly random distribution of the defects is 
supposed with interactions between them. 
Subsequently, some improvements have 
been introduced on the detailed mechanism 
of the interaction and of the formation of the 
cluster of defects (2)~( 7). 

Some nonstoichiometric compounds have 
intermediate phases with a definite com- 
position which is given by the ratio of 
small integers and with narrow composition 
range such as U409 appearing in the biphasic 
mixture of UOz+, and U308. The origin of 
the intermediate phase is attributed to 
the periodic order of defects (excess anions 
in the case of UO*+,), which is confirmed 
by the experimental results of the forma- 
tion of the superlattice structure. The dis- 
tributed defects must be treated as “liquid” 
in the solid solution range, while they must 
be treated as a part of the crystalline solid in 
thektermediate phase. In the present report 
we use a model where defects are distributed 
both in the superlattice position and in the 
remaining “random” position. 

In the present report we discuss the prob- 
lem of a phase transition with variation of 
concentration. The boundary of the inter- 
mediate phase is mostly parallel to the 
temperature axis in the phase diagram, and 
the treatment of the phase transition as a 
function of temperature is not practical. 

2. Thermodynamic Features of the 
Intermediate Phase 

The partial molar free energy of the 
component X varies with the temperature 
and the composition in the nonstoichio- 
metric compound such as MX,,,. In the 
case of occurrence of the intermediate phase 
in the nonstoichiometric region, the aspect of 
the partial molar free energy or the chemical 
potential per mole at a constant temperature 
is shown schematically in Fig. 1, where we 
can recognize that the chemical potential 
increases enormously at the composition 
of the intermediate phase, x = x0. 
Unfortunately, we have little information 
experimentally on the accurate shape of the 
chemical potential curve at this point 
because of the extreme narrowness of the 
intermediate phase range. 
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FIG. 1. Variation of the chemical potential of the 
component X, with the composition x in the nonstoi- 
chlometrlc compound MX,;,. The intermediate phase 
appears at x = x0. 

The features of the chemical potential 
become more evident by taking the differen- 
tiation with x. Now, let us examine the 
function, 

5(x)=$ 
where p is the chemical potential of the 
component X, and x is the concentration of 
excess anions in the nonstoichiometric 
compound MX2+,. The function e(x) has a 
sharp peak at the center of the intermediate 
phase range, x =x0. The peak height &o) 
becomes infinite when perfect order is 
achieved, as will be discussed in the following 
sections. 

The above feature that the function t(x) 
has a “singularity” is important in order to 
describe the state of the intermediate phase. 
The condition e(x) = CO means that an 
ordered state is achieved and fluctuations 
vanish in the intermediate phase. In contrast 
with this, the critical point where the fluctua- 
tions become enormous is designated ther- 
modynamically by T(x) = 0, as we can see in 
the ordinary order-disorder system. Of 
course we can recognize the same condition 
(t(x) = 00) at the stoichiometric composition. 
In general, vanishing of nonstoichiometry is 
expressed by t(x) = 00. 

3. Formulation of the Model 

We consider a nonstoichiometric system 
MX2+,, in which excess anions are dis- 

tributed in the interstitial sites of the parent 
lattice MX,. When there is no occurrence of 
the intermediate phase the excess ions are 
located nearly randomly as treated by 
Anderson (I). As the concentration of X 
approaches to a certain value, x =x0, they 
begin to locate certain sites and begin to form 
a superlattice. We call these certain sites 
superlattice sites in the following. The 
superlattice sites can be designated in anti- 
cipation among the available interstitial sites, 
whether they are occupied or not, because 
their locations are determined in the parent 
lattice. Then the distributed excess anions 
are divided into two groups; “ordered” 
anions in the superlattice sites and “random” 
remainders. Thus we can describe the 
nonstoichiometric system as the occupied 
and unoccupied superlattice sites and as 
the occupied and unoccupied remaining 
sites. 

The partition function of the whole system 
is given by, 

20 = K(T)ZQ(T, x), (2) 

where K(T) is the partition function of the 
parent crystal MX2, Q(T, x) is the vibra- 
tional partition function due to the excess 
ions and Z is the configurational partition 
function on the excess ions. The number of 
the available interstitial sites is considered to 
be equal to that of MX2, N,, for simplicity. 
The number of the excess ions is obtained by, 

Nv = xNo. (3) 

When the size of the unit cell of the superlat- 
tice is (1 /a) times as large as the original one, 
the number of the superlattice sites is given 
by, 

N, = aNo, (4) 

and 

N, = f’L + NOB, (5) 

where Nap and NarB are the numbers of the 
occupied and unoccupied sites, respectively. 
The number of remaining interstitial sites is 
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given by, 

No = (1 -a)No, (6) 

and 

No =Nm+Nm (7.) 

where NBA and NpB are the numbers of the 
occupied and unoccupied sites, respectively. 

The configurational partition function of 
the nonstoichiometry is then obtained by, 

where E is the interaction energy. In the 
following treatment we use the Bragg- 
Williams approximation with variable com- 
positions. Putting the order parameter as s, 
we have the relations: 

NaA = X{CY + (1 - a)s}N,,, (9) 

N~B={(Y-X(Y-(l-cr))sx}No, (10) 

NB/,=x(l-~)(l-.s)No (11) 

and 

NOB=(l-(~){l-(l-s)x}No. (12) 

For the case of perfect order s = 1, all excess 
ions are located in the superlattice sites, that 
is, N,a = xNO and NPA = 0. And for the limi- 
ting case of disorder s = 0, excess ions are 
distributed in (Y sites and p sites according to 
the ratio of both sites as Naa = xaNo and 
NPA=x(l-~)NO. 

The detailed origin of the interaction 
energy is not discussed here. Hypothetically, 
we consider that E in Eq. (8) consists of two 
parts: (i) the repulsive term between excess 
ions in the ordinary solid solution and (ii) the 
lowering energy due to formation of the 
superlattice. They are given by, 

E={-x(~-x)E~-x~~s~E~}N~, (13) 

where e1 is the repulsive energy between 
adjacent excess ions and s2 is the order 
energy, which depends on materials. 

In the following we consider the 
configurational partition function due to 
excess ions in Eq. (2); then, the Helmholtz 
free energy of the system is expressed by, 

F= -kTlogZ. 

In the case of solids under ordinary pressure, 
we can replace this by the Gibbs free energy 
as, 

G= -kTlogZ. (14) 

Using Eqs. (8)-(14), we have, 

G={-x(~-x)E~-x~s~F~}NO 

+xcu(l+ys)NokTlog{x(l+ys)) 

+a(l-x-ysx)NokTlog(l-x-ysx) 

+x(1-LY)(~-s)NokTlog{(l-s)x} 

+(l-a){l-(1-s)x}NokT 

x log{1 - (1 - s)x}, (15) 

where we put, 

y=(l-(Y)/(Y. (16) 

In the above equations the range of x is 
limited as 0 s x c (Y. As has been mentioned 
already, cy expresses the portion of the 
number of available superlattice sites in the 
number of the available interstitial sites. The 
intermediate phase occurs near x = LY as 
shown in the following section. When x > (Y, 
the phase disappears. However, this situa- 
tion cannot be described by the above model. 
For a constant temperature, G is expressed 
as the function of two variables, x and S. 
However, in the following section it will be 
found that G is determined uniquely by 
designating x. 

4. Derivation of the Equilibrium Condition 

The equilibrium condition is obtained 
from Eq. (14) and by putting, 

dG 
- 0. 

z- 
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We have, 

aG 
-= -2x*ss*N~+X(l-cX)NokT 
as 

{l-(l-s)x}(l+ys) 
l”g{l-(l+ys)x}(l-s). (18) 

We obtain the following equation from Eqs. 
(17) and (18), 

2EZSX {l-(l-s)x}(l+ys) 
(1 -a)kT =log{l-(l+ys)x}(l-s)~ (19) 

The degree of the order at x = (Y also 
depends on (2EJkT). When we describe the 
width of the ordered phase by, 

w=a-Xl, (21) 

x1 being the value where s increases enor- 
mously, W varies as shown in Fig. 3. That is, 
the width of the ordered phase decreases 
with decreasing (2e2/kT) and vanishes at the 
point, 

(22) 
Eq. (19) is difficult to solve analytically. 
Differentiating the right side of the above 
equation and putting s = 0, we obtain the 
condition that Eq. (19) has the solution 
except s = 0. This condition is, 

2&2X 1 
(1 -cu)kT’a(l -x)’ (20) 

The relation between x and s can be 
obtained with the numerical calculation of 
Eq. (19). In Fig. 2, the order parameter s is 
plotted against x for the case of (Y = 0.25 
using various values of (2E2/kT). From this 
we can recognize that the ordered phase is 
formed as the concentration x approaches to 
(Y and that the width of the ordered phase 
depends on the interaction term (2EJkT). 

FIG. 2. Plotting the order parameter s against the 
excess ion concentration x for the case of (Y = 0.25 and 
using various values of (2~~/kr) in Eq. (19). 

This can be obtained by putting x = cy in Eq. 
(20). The narrow width of the ordered phase 
which is often observed in nonstoichiometric 
compounds means that the ordering energy 
is small. 

Next we examine the dependency of 
the free energy on the concentration x. 
Differentiating G with N, we obtain the 
chemical potential as, 

+{a +s(l -a)}kT log x(1 + YS) 

(1-x)-ysx 

+(l-a)(l-s)kTlog 
X(1 -3) 

1 -(l -s)x’ 

(23) 

The function e(x) defined in Eq. (1) is also 
obtained as, 

i 
1 1 + ys 

kT x+(1-x)-ysx I 

+(l-a)(l-s)kT L+ 
1 

l-s 
x I 1-(1-s)x . 

(24) 

From Eq. (19) we have concluded that the 
order parameter s reaches 1 as x goes to CY, 
whenever the energetic condition is satisfied. 
Applying this to Eq. (24), the term (l+ 
ys)/{( 1 -x) - ysx} becomes infinite, when 
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FIG. 3. The width of the intermediate phase depend- 
ing on the interaction term (~&J/CT) for the case of 
a =0.25. 

x + a, (and s + 1). Thus [(x) is shown to be 
divergent in the region of the intermediate 
phase. 

I has finite value in some cases. The 
reason is that perfect order is not achieved 
(S < 1) as has been described above. For 
instance, as we can see in Fig. 2, s (X = a) is 
only 0.725 for (Y = 0.25 and for (2ez/kT) = 
16.5. This gives 5((u) = 2~~ + 0.92e2. Thus 
the value of ((a) expresses the degree of 
order in the intermediate phase. 

Hitherto we have used s for expressing the 
degree of order. For this purpose we can also 
use the ratio NaA to NPA, which are the 
numbers of excess ions in superlattice sites 
and in remaining sites, respectively. We 
have, 

77 = Nad NM, (25) 

and using Eqs. (9) and (ll), 

q=a+(1-cy)s. (26) 

Eq. (24) is rewritten using Eq. (26) by, 

+ Wl-d2 
l-Ly-(l-n)x’ (27) 

Finally we must point out that the inter- 
mediate phase often appears in the immisci- 
bility gap or in the two-phase region. On the 
other hand we suppose that the intermediate 
phase appears in the single and homo- 
geneous phase where excess ions are dis- 
tributed nearly randomly. However, it 

depends on the term 2.5i~ in Eq. (23) 
whether the “background” phase is the 
biphasic mixture or the single one. The 
condition for the phase separation is given by 
2~~ > kT. Thus the case that the intermediate 
phase appears in the biphasic mixture is 
also included in the treatment described 
above. 

5. Fluctuations of the System 

In the preceding section we obtain the 
result that the function t(x) increases enor- 
mously at x = Q and becomes infinite in some 
cases, by using the model where excess ions 
are distributed both in the superlattice 
sites and in the random sites. Here we 
examine the physical meaning of the result 
from the viewpoint of fluctuations of the 
system. 

When we express the average number of 
the solute molecules in a small volume u of a 
solution by (n), the mean square fluctuations 
is given by, 

(An2)=(n2)-(n)2. (28) 

According to the statistical theory of fluctu- 
ations (8), this quantity is given by the rela- 
tion as, 

kT 
(An2)= (dp/dn)p,T’ (2% 

This equation relates the local fluctuations of 
the distributed particles in a solution and is 
applicable to the solid solution system too. 
And the local fluctuations of the concen- 
tration is obtained by dividing by N& that 
is, 

(Ax’)= kT 
J%@/.~~x)P,T’ 

(30) 

Using Eq. (l), we rewrite the above equa- 
tions as, 

(Ax”)=& kT 
and (An2)-No--- 

0 4%)’ 

(31) 
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From Eqs. (27) and (31), we have, 

(fP)=( $-2(g*($) 

1 17* +-+- 
(l-n)* -1 

x a-?&x +1-Ly++ * I 
(32) 

From the above equation we can recognize 
the effect on the local fluctuation of the dis- 
tributed particles, here related to the dis- 
tribution of excess ions, by occurrence of the 
intermediate phase. Fluctuations decrease 
by occurrence of the intermediate phase. For 
the limiting case of order, that is, x = (Y, and 
s = 1 or n = 1, the term ~*/(a -7x) becomes 
infinity and fluctuations vanish. This states 
that excess ions are all ordered in the super- 
lattice positions and that no particle exists in 
the irregular positions. When there is no 
superstructure, that is, s = 0 or 77 = cy, we 
have 

(An*) = PI,,{ $+;+$-1-l. (33) 

Specifically, for the perfectly random dis- 
tribution where the interaction vanishes, 
Ed = 0, we have, 

(An*)=&x(l-x). (34) 

This corresponds to fluctuations of the 
distribution probability in the model as 
described in the following. 

We divide the whole space of the system 
into small cells with volume v which contain 
(l/a) available interstitial sites. This cell 
corresponds to the unit cell of the super- 
structure. For convenience we take (Y = 0.25 
in the following discussion. Some cells 
contain no excess ion and some contain one 
ion. The number of the cells which contain m 
ions is expressed by C(m), where 0 < m s 4. 
According to probability theory this number 
is obtained by (9), 

C(m) = No( JPT, (35) 

where r is the number of available sites in the 
cell and p and q are the concentrations of the 
excess ion and the vacancy, respectively. In 
our case the equation is rewritten as, 

C(m) = A%( :)x-(1 -x)~-“‘. (36) 

Above relations can be applied for only 
random distribution. From the probability 
theory, fluctuations of the number of ions in 
the cell is given by, 

(Am*)=Nopq=Nox(l-x), (37) 

which corresponds to Eq. (34). 
When x approaches (Y, most cells contain 

one ion, that is, C(1) increases. When x 
becomes larger than (Y, C( 1) decreases again. 
With increasing C(l), the cells containing 
one ion become adjacent with each other. 
We have not referred to the position of the 
ion in the cell. However, when cells contain- 
ing one ion are adjacent, the interaction 
energy lowers by orientation of these cells, 
unless there is spherical symmetry on the 
internal structure. The cell behaves like the 
spin and a new order is formed among cells 
containing one ion. By the “separating” of 
ordered cells, C( 1) remaining in the random 
orientation decreases compared with the 
number such as given by Eq. (36). Redistri- 
bution occurs such as, 

C(O) + cc3 + 2CUL (38) 

where C(m) expresses the cell which contains 
m excess ions. Thus C(O), C(2), C(3) and 
C(4) which mean local fluctuations of the 
number of particles are also decreasing in 
proportion to the orientation. This is another 
model on formation of the intermediate 
phase. 

6. Conclusion 

We derive the necessary condition for 
occurrence of the intermediate phase, the 
relation between the order parameter and 
concentration, the relation between the 
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width of the phase and the interaction energy References 
and so on, on the basis of a simple model 
where excess ions are distributed both in the 
“ordered” sites and “random” sites. 
However, practically, the intermediate phase 
such as U409 has more complicated struc- 
ture. Comparison of the obtained result with 
the experimental one should be done care- 
fully. The function t(x) which is related to 
fluctuations of the system should be useful to 
distinguish stoichiometric “compound” from 
nonstoichiometric “solution.” 
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